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In the literature on the theory of plasticity one can encounter discussions 
of simple loading, by which is meant an equilibrium process of a pro- 
portional change of all components of the stress tensor and correspond- 
ingly all components of the strain tensor for all particles of the body. 
The determination of the simple loading is based on the assumption that 
the proportionality coefficient for the increase of the components of the 
stress tensor and the coefficient k for the increase of the components of 
the strain tensor depend only on tine. Below we will not deal with the 
not-uninteresting question of the character of the particular ideal 
physical properties which the deforming body should possess to permit a 
process of simple loading. 

We will study the phenomenon of the deformation of a continuous medium 
from the geometrical point of view, apart from the physical nature of 
that medium. ihe derivations following below are applicable to gaseous, 
liquid and plastic or solid bodies. 

We will demonstrate that with an exact analysis of the phenomenon of 
the deformation of any continuous medium, the process of deformation, in 
which the components of the strain tensor vary according to the propor- 
tional law given above. may correspond only to deformations of some 
special type for the entire body as a whole. Of course, a state of strain 
of a particular kind can be assured for every body only by a very special 
type of external surface loading. 

It follows from this that apart from the physical nature of the body 
the concept of simple loading for arbitrarily distributed external sur- 
face forces has, in general, no meaning for finite deformations. 

To prove the statement formulated above, we will take some system of 
coordinates 4“. 5’. t3 fixed in the medium. and analyze two positions of 
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the body: first, the original position, in which an element of length is 
given by the formula 

ds,,% = gas0 dtIL dep (1) 

and second. the final position, in which the element da0 corresponds to 
the element ds, where 

ds2 = & dt= df@ (2) 

In these and the following formulas, summation is assumed to take 
place on repeated upper and lower indices. 

As is well known, the covariant components of the strain tensor are 
given by the formula 

Let us assume that the deformed state under investigation can be ob- 
tained from the original state by means of a simple loading where the 
strain tensors for the intermediate states are given by the formulas 

E a@ l = k (t) cap = +- (g+ l - g,J (a, 3 = i,2,3) (4) 

where 0 ( k < 1, k(O) = 0 corresponds to the first original state, and 
k(3) = 1 corresponds to the second state. 

Let us now recall the nature and the derivation of the geometrical 
compatibility conditions for the components of the strain tensor. Since 
the quadratic forms of the squares of the elements of length determine 
the element of length in the Euclidean space, the Riemann tensor goes to 
zero for the fundamental tensor g 

a@‘* 
This gives the relation 

where 

r 

(5) 

(6) 

and the matrix 11 g*g 11 is the inverse of I I gap* II. 

In the general case equation (51 represents a system of nonlinear 
second-order partial differential equations consisting of six independent 
equations corresponding to the following systems of indices: 

ij pv = 1212, 1313, 2323, 1213, 2123, 3132 (7) 

The system of coordinates cl. c2. e3 fixed in the medium is arbitrary 
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and deforms together with the material. This coordinate system may always 
be assumed to be in the original position a Cartasian one, and consequently 
the components of the tensor g ape do not depend on [I. r*, r7. When this 
fact is utilized, the compatibility conditions for the components of the 
tensor 6os can be written on the basis of (4) and (5) in the form 

where 

(8) 

(9) 

and where in the base go@* the contravariant components of 11 g’ati 11 are 
determined from the matrix equation 

II g*IU II = II g$ + 2k cap II-’ (10) 

With k + 0 we have goup + goti. 

The coefficient k can assume arbitrary values in the interval (0.1). 
and thus the system of equations (8) separates into the following two 
systems of equations 

where the components of g *a o depend on the arbitrary value of k. which 
leads to an increased number of equations on c 

aB 
in system (12). 

The system of equations (11) for the components of the finite strain 
tensor ca/3 coincides with the system of St. Venant equations for the com- 
ponents of the infinitesimally small strain. The general solution of 
system (11) can be presented in the following form: 

where q([‘, 6’. ej). $(p, c2, 6’) and $(p. c*, 6’) are three arbi- 
trary functions of their own arguments. In the approximate linear theory 

the quantities 4, $, 5 can be considered as vector components of dis- 
placements of a point of the medium. 

Equations (12) can be considered as additional equations limiting the 
form of the ([I, e*, p) and correspondingly the form of the 
functions 6 giving the strain which allows a simple load- 
ing. 
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Obviously, equations (11) to (12) are satisfied if the strain is homo- 
geneous (aff ine), when 6 

crs’ 
const (a. /3 = 1. 2, 31. 

As an example we will study a strain which for an orthogonal Cartesian 
coordinate system is given by the following formulas: 

and correspondingly 

El1 = E,3 = E33 = 0, El2 = $ h (c3), El3 = + , e23 = f h’ (53) 4’ (14) 

where h(t3) is an arbitrary function which is not constant. 

It can be easily verified that with k = 1 the system of functions (14) 

satisfies all equations of system (12) and with k f 1 one of the equations 
(12) corresponding to the indices i = 1. j c 3, I’. = 1, v = 3 is not 
satisfied. Consequently. the components of the tensor tap l = kr 

43 
where 

‘a@ given by formula (14), do not satisfy the compatibility conditions. 

Thus the geometrically re&lized deformation given by tensor (14) can- 
not be obtained from the initial state by means of the process of simple 
loading, for geometrical reasons. 

If the deformations are infinitesimally small and only small terms are 
preserved in the compatibility conditions, then the compatibility condi- 
tions are satisfied, with a proportional change of the components of the 
strain tensor at every point of the body for any strain distribution 
allowable by the compatibility conditions. 

Thus, because of its nature, the concept of simple loading can be only 
applied within the framework of the approximate linear theory, which is 
valid only for geometrically small deformations, 

It is well known that in the typical and basic problems of the theory 
of motion of a viscous liquid, and in the theory of an ideally plastic 
medium, the deformations are finite, and thus the extension of the motion 
of simple loading to this case should not supposed to be always 
possible. 

Of course, in the general case, the strain distribution inside the 
body imposes some limitations of a geometrical character upon the possible 
deformation paths for neighboring particles of the medium when the ex- 
ternal conditions prescribe some process of deformation of the body as a 
whole. 

Translated by M. I.Y. 


